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followed by state assignment is superior to previous state assignment techniques for large
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General Decomposition of Sequential Machines:
Relationships to State Assignment

Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Abstract

In this paper, we present new techniques for state as-
signment of finite state machines based on state machine
decomposition algorithms.

A finite state machine can be decomposed into smaller
interacting machines so as to optimize area and perfor-
mance of the eventual logic implementation. A recently
proposed form of decomposition, which has been shown
to be superior to previous decomposition methods, in-
volves identifying subroutines or factors in the original
machine and eziracting these factors to produce factored
and factoring machines.

Optimal state assignment corresponds to finding an
optimal multiple general decomposition of a finite state
machine. We present state assignment techniques tar-
geting two-level and multi-level logic implementations

ased on factorization aigorithms followed by state as-
signment algorithms. For the two-level case, we prove
that one-hot encoding a non-trivially faclored machine
13 guaranteed to produce a better result than one-hot en-
coding the original machine. Experimental results in-
dicate that this technique of factorization followed by
state assignment is superior to previous state assign-
ment techniques for large sequential machines, when
targeting either two-level or multi-level implementa-
tions.

1 Introduction

The problem of optimal state assignment involves find-
ing a binary encoding of internal states in a finite state
machine so as to produce a minimum area logic imple-
mentation after encoding and logic optimization. Sev-
eral techniques for state assignment have been proposed
in the past; techniques targeting two-level or sum-of-
product implementations (e.g. {4], [7], {6]) and more
recently, techniques targeting multi-level combinational
logic implementations [2] [9]. While the techniques tar-
geting two-level impiementations attempt to minimize
the number of product terms in the eventual imple-
mentation, the techniques targeting multi-level logic at-
tempt to minimize the number of literals in the fina)
implementation.

In (4], the use of multiple-valued minimization to find
an optimal input (present state) encoding and therefore
good state assignment was introduced and results bet-
ter than previously proposed techniques were presented.
However, one failing of this strategy is that it ignores
the next state space/field of the finite state machine
completely, sometimes resulting in a sub-optimal state

assignment. The problem was partially alleviated in
(7], via the use of heuristic output (next state) encoding
algorithms, but the problem of effective integration be-
tween the input and output encoding steps failed to be
solved. An encoding that satisfies the constraints gen-
erated by both the input and output encoding steps is
not guaranteed to be found. Similar problems afflict the
early techniques of state assignment that target multi-
level logic implementations [2].

It is often convenient to realize a sequential circuit as
an dinteri;onnection of two Of; more .subtcircuits for area
and performance reasons. Heuristics for state assign-
ment and techniques for logic optimization in sequen-
tial circuit synthesis work better for small circuits as
opposed to large ones. If a good decomposition can be
found, generally speaking, smaller areas for decomposed
circuits over a single lumped circuit will resuit. The
decomposition may be attractive from a performance
point of view as well. The decomposed circuits can be
clocked faster than the original machine due to smaller
critical path delays. Of course, a truly optimum state
assignment algorithm followed by an optimum logic op-
timization step will not work better for a decomposed
circuit as opposed to a lumped circuit.

Decomposition methods can be classified into three
main categories — parallel, cascade and general de-
compositions, corresponding to no interaction, uni-

directiopal jnteraction and bi-djrectional interaction be-
tween the decomposed submachines.

The decomposition of sequential machines was first
treated in a formal way by Hartmanis (5] in 1960. The
work was expanded in [6] and by others. Unfortunately,
cascade decomposition has limited use in the design of
modern finite state machines. For example, specifica-
tions of centralized controllers in microprocessor chips
do not usually have good cascade decompositions. In (3],
factoring algorithms for finding general decompositions
of machines were proposed. ese algorithms identify
seta of states in the original machine with similar in-
ternal relationships and represent these sets of states
by a call to a factoring submachine to produce a fac-
tored/decomposed submachine. For large machines, the
areas of the decomposed realizations were smaller than
the lumped circuits.

If factorizing prior to encoding and optimizing a
given machine produces a better result than encoding
and optimization without decomposition, it means that
the heuristic encoding techniques used produced a sub-
optimal result in the latter case. In fact, given the de-
composed machines, an encoding can be constructed for
the original machine which produces a result at least of
the same quality as the former case. The problem of
optimal state assignment corresponds {o finding an op-
timal multiple general decomposition of a machine (by
multiple decomposition we mean decomposition in sev-
eral components rather than just two).

In this paper, we present new techniques for state
assignment of finite state machines, targeting both two-
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level and multi-level logic implementations, based on
state machine factorization followed by the state as-
signment techniques of (4] and [2]. If the machine can
be non-trivially factored, we prove that a better state
assignment than one-hot encoding is guaranteed using
these techniques in the two-level case. This means that
factorizing a machine prior to using a KISS-style (4]
algorithm has a upper bound on the number of result-
ing product terms that is lower than the upper bound
when using a KISS-style algorithm on the original ma-
chine. Since this upper bound when using KISS-style
algorithms is a tight one, lowering it almost always im-
proves the results. While we can only prove a weaker
result for the more complicated mulli-level case, experi-
mental results indicate that that decomposition followed
by state assignment produces superior results for large
sequential machines, in this case as well. The initial
factorization results in effective exploitation of the re-
lationships between the input (present state) space and
output (next state) space in the decomposed subma-

chines for both the two-level and multi-level cases.
Basic ée%ntlgons anc?- notations used are given in Sec-

tion 2. Notions of exact and ideal factors are presented.
The global strategy for state assignment is presented
along with an illustrative example in Section 3. Given
this strategy, we prove theorems that relate the number
of product terms and literals in an ideally-factored one-
hot encoded machine to a lumped one-hot encoded ma-
chine after optimization. A procedure to find ideal fac-
tors, given a State Transition Table specification, is pre-
sented in Section 4. The procedure is modified to find
near-ideal factors in Section 5. Factorization techniques
tailored to (eventual) two-level and multi-level imple-
mentations are described in Section 6. Experimental
results obtained on benchmark examples are presented
in Section 7.

2 Preliminaries
For an example factorization of a machine, the reader
is referred to [3]. Any Ng disjoint sets of Nr states can

be extracted as ocgurre ces of a facjor and the decom:
position performed to obtain to submachines M; and

M;. The complexity of the decomposed submachines
is profoundly affected by the choice of the factor. The
transition edges between the Ng sets of states play an
important role in determining the quality of a factor.
If exactly similar transition edge relationships exist be-
tween these sets of states, factorization will result in the
smallest possible number of transition edges in the de-
compoear submachines. The flow of state information
between the two machines, M; and M,, will be mini-
mal and an economical realization will result. However,
if the sets of states corresponding to the occurrences of
the factor have dissimilar transition edge relationships,
the resulting submachines will be complex, i.e. with
a large number of transition edEes dependent on state

information from the other machine.
V&e now present ef?mt?ons w {&1 will be used to de-

scribe the notions of exact and ideal factoring machines
(factors). The object being defined appeatrs in bold
type.

A factor is Ng (> 1) sets of states and all fanout
edges from these sets of states in the given machine.
Each set of states is called an occurrence of the factor
F and is denoted Op*. The maximum number of states
in any of the Ng occurrences of F, is denoted Ng (Np >
2).

A transition edge in the occurrence of a factor, Or',

is an internal edge if it fans into and fans out of states
within Of'. An exit state in any Of' is one which has
no internal fanout edges. A state in Of' is an internal
state if all edges from the state fan into states within
Of' alone, i.e. all fanout edges from the state are in-
ternal edges. An entry state in any Of' is one with
no internal fanin edges. The fanin edges intoa O £ are
denoted fin(i). The fanout edges out of a Op' are de-
noted fout(i). The external edges outside of any factor
occurrence are denoted EXT.

Given two occurrences of a factor, Of' and Of?,
a state correspondence pair is {7;, ) D g €
OF!, g2 € OfF?. A factor is defined to be exact if (1)
state correspondence vairs for all states in Of' to states

in Of? can be found such that no state appears in more
than one correspondence pair and (2) for each internal
edge in OF!, el, if el— > input N e2— > input # ¢
for any €2 in OfF?, (el— > fanout, e2— > fanout) and
(el— > fanin, e2— > fanin) are state correspondence
pairs. The definition of an exact factor can be extended
for Ng > 2.

An ideal factor with NR occurrences, each with
Ng(i) + Ni(i) + 1 states, is an exact factor with Ng(i)
entry states, N(i) internal states and a single exit state.

If two edges in a State Transition Graph can be rep-
resented by the same product term in an encoded and
minimized two-level implementation, these two edges
are said to be mergeable under that encoding.

3 The Global Strategy

In this section, we will describe the global strategy used
in integrating factorization algorithms with state assign-
ment techniques. An illustrative example will be pre-
sented and some theoretical results given.

The basic idea in our approach is to identify factoring
states in a machine, and rather than performing a fac-
torization, separately encode the states in the factored
and factoring submachines. By separate encoding we
mean that each submachine is encoded using a different
set of bits. The strategy is described in detail below.

1. Given an original machine with Ns states, Ng dis-
joint sets of states, each with cardinality Nr are se-
lected. These sets represent occurrences of a factor
and the selection of these sets is accomplished us-
ing factorization techniques that will be described
in Sections 4, 5 and 6.

2. We perform two separate encoding steps using stan-
dard state assignment techniques. The unselected
and selected states are encoded separately, using
different fields of Ny; and Nap bits respectively.

3. The Nr states in each occurrence of F, Of’, are en-
coded using the second field of Ny > log(Ng) bits.
Each occurrence is coded in exactly the same way
— corresponding states are given the same code.

4. The unselected states are encoded using the first
field of N1 bits. The states in the Ng occurrences
that were given the same code in Step 3 are differen-
tiated using the first field. Each occurrence is given
a code distinct from any of the unselected states.
We thus require Nys > log{Ns — Ng x Np + Ng)
bits.




Figure 1: Factorization prior to Encoding

5. The second field for the unselected states is as yet
unspecified. This field can be arbitrarily chosen.
However, it is beneficial to uniformly code this field

fchl: each.of he_unselected states with a code used
already in the factor occurrences.

In Figure 1, a machine with 10 states is shown. A
factor with 2 occurrences, each with 3 states. namely,
(s4, 85, 86) and (87, 88, 89) is selected. The factor is
ideal with a single entry state in each occurrence (s4,
s7), a single internal state (85, s8) and a single exit
state (86, 89). After factorization, the unselected and
selected states are one-hot encoded separately as shown
in Figure 2. We have, in our example, 4 unselected
states, ngme_ly, s1, s2, 83 and s10. This means we
R SRit oin bf ﬁ‘q& Rkl 300 deolts om they seeond
was chosen to coincide with the code assigned to the
exit states in this case. Indeed, as we will show in Theo-
rem 3.2, this ensures that the factorization is maximally
exploited. Of course, instead of one-hot coding the two
fields, an encoding of shorter length can be constructed.
One can use state assignment programs like KISS {4] and
MUSTANG [2] to perform Steps 3 and 4, depending on
whether two-level or multi-level logic implementations
are targeted.

We now state and prove a theorem that relate the
numbers of product terms after one-hot encoding and
t;o—level optimization in the original and factored ma-
chines.

Lemma 3.1 : Two edges that fan oul to different next
states in @ machine are not mergeable under a one-hot
encoding.

Theorem 3.2 : Given & machine M, let the number
of product terms in a one-hot coded and logic min:-
mized two-level implementation be Py. If an ideal factor
F € M is extracted, then the number of product terms
obtained by one-hot coding the factored and factoring
machines separately, Py, is related to Py by the follow-

s1 100000 001
s2 010000 001
s3 001000 001
s4 000100 100
s5 000100 010
s6 000100 001
s7 000010 100
s8 000010 010
s9 000010 001
s10 000001 001

Figure 2: State Assignment After Factorization

ing inequality.
Nr~1
Py 2 A+ Z(lem(i)l -1 -1
i=1

where |em(i)| is the number of product terms obtained
by one-hot encoding and minimizing the e(i) internal
edges in each Op'. The number of encoding bits used
after factorization will be (Ng—1) x (Np—1) — 1 less
than for the original machine.

E’roof: \gl_e gu;ft show that ldteﬂl factonzatl?n néi' ?ﬁ:{

ot encoding do not prevent the merging ol edg

are mergeable when one-hot coding the original ma-
chine. Due to factorization, the edges in the different
occurrences of the factor cannot merge. For example,
ey € e(i) cannot merge with e; € e(j) if i # j. But
e; and e; cannot merge in the one-hot coded original
machine as well because they fan out to different next

sta‘ﬁgb, edges in the factored and factoring machines
cannot merge. It is conceivable that a ey € fin(i) could
merge with e; € e(i) in the original machine. However,
since F is ideal and only has entry, internal and exit
states, it means that no e, € e(i) fans into the entry
states and ey, € fin(i) can only fan into some entry
state. Therefore, these edges could not have merged in
the original machine either.

Similarly, some e, € fout(i) could merge with e, €
EXT in the original machine, if they fan into the same
state. The states outside F are given second field codes
corresponding the code of the exit state in each Of'
(Step 5 above). Thus, the exit state’s complete code
differs only in the first field from the codes of states
outside F. This means that fanout edges from the exit
state fout(i) can merge with external edges EXT in the
factorized machine also (by merging the first field in the
present state, since they fan into the same next state).

We now show that the internal edges e(i) € OFf'
can be coalesced, unlike in the original machine. For

the original machine we will have """ |em(i)| product
terms corresponding to these edges, after one-hot cod-
ing and optimization. The state field is split in two
parts in the factorized machine, fn, and fn,. In the
worst case, in the next state logic, these two fields are
realized separately with no sharing whatsoever. It is
easy to see that |e,,(i)| product terms suffice to realize

fna, since the e(i) are identical and the fanout states
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Figure 3: Smallest possible Ideal Factor

have been coded the same in fn;. The e,, (i) realize the
primary outputs as well. The fn, field can be realized
even more simply. For each Op' we have e(i) edges with
the same next state field in fn,, corresponding to the
code assigned to the Of' (Step 4 above). Thus, these
edges can be merged into a single product term with a
don’t care primary input vector. The states in the prod-
uct term correspond to all the entry and internal states
in the Op’. Therefore, the difference in the number of
iesulting product terms in the factorized machine is at
east

Ngr-1

Ngr
Y lem() = lem(NR)l = Nr = Y (lem(i)] - 1)~ 1
=1

=1

less than the original machine.

The number of encoding bits used in the original
machine is Ns. In the factorized machine, we need
Ns — Np x Nr 4+ Npg bits for the first field and Ng

for the second. The reduction in bits is therefore
(NR-1)x (Np-1)-1 Q.E.D.

State assignment techniques do not perform signif-
icantly better than one-hot encoding in terms of the
number of product terms in the final PLA. KISS guar-
ag&eeas tha} its result is at leasé as small as a one-hqt
coded result, and 1n general produces results wit prod-
uct terms slightly better than a one-hot coded imple-
mentation. NOVA (8], a variation on KISS, produces
implementations with generally greater product terms
than KISS or one-hot encoding, but saves on the num-
ber of encoding bits used.

Thus, Theorem 3.1 is quite a strong result, since it
provides a deterministic estimate of the number of prod-
uct terms in the final implementation. The upper bound
on the number of product terms resulting from encod-
ing an ideally factorized machine using a KISS-style al-
gorithm is always lower than using the KISS-style al-
gorithm on the original machine. This upper bound
is found using multiple-valued minimization {4] and as
mentioned earlier, is a tight bound — results signifi-
cantly better than this are seldom obtained. The larger
the ideal factor (in terms of number of states or number
of occurrences), the greater will be the gains in using the
strategy described. Even extracting small ideal factors
will produce better results. The smallest possible ideal

tor ig one with 2 states and 2 occurrences shown i
?fgure . nﬁle }actor 'ﬁas one entry state and one exli%

state. It is highly probable that at least one of these
factors will exist in a large machine.

The strategy presented can be generalized to multiple
factorization. Several disjoint ideal factors may exist in

a machine, that can be simultaneously factored to pro-
duce cumulative gains in the number of product terms.
If the factors are not disjoint, then choices have to be
made as to what factors to extract at the expense of
losing others.

Theorem 3.3 : If N ideal factors, Fy, F,, .. Fy, are
ertracted which contain disjoint sels of states, the total
gain in the number of product terms when performing
a one-hot coding after factorization over one-hot coding
the original machine is

N
G = Zgj
j=1

where g; is the gain corresponding to ertracting F;
alone.

Proof: We now have N + 1 fields that are coded sep-
arately, corresponding to the N sets of states in each
factor and the N + 1-th corresponding to the unselected
states. By the arguments of Theorem 3.2, none of the
fin(j, i) can merge with e(j, i) in the original or fac-
tored machines for any F;. The one-hot coding on the
factored machine is performed as follows. Every occur-
rence OF;' has a distinct N + 1-th field. Each of the
states (including the exit state) in the F; and the un-
selected states are given a k-th field code equal to the
exit state’s code of F. Any fout(j, i) fans out of an
Lt e e e o A R e o e
fout(j, i) and EXT are mergeable in the factorized ma-
chine, if they were mergeable in the original machine.
Similarly, the codes of the exit states in each occurrence
of the factor also differ only in the N + 1-th field alone,
and hence if fout(j, i) and fout(k, {) could merge in the
original machine, they are mergeable in the factorized

m"’fﬁ’éng'am due to extracting each factor Fj is due to
the merging of the e(j, i), which are all disjoint and
there could bave been no merging across the e(j, {) in
the original machine. Therefore the cumulative gain is

N
G =2y
ij=1

Q.E.D.
So far, we have dealt with the two-level case. The
problem of state assignment for the multi-level case
corresponds to finding an encoding that minimizes the
number of literals in the encoded and optimized ma-
chine. While we cannot deterministically predict the ef-
fects of multi-level logic optimization, we can relate the
number of literals in the original and factored machines
after one-hot encoding and two-level logic minimization,
but prior to multi-level optimization.

Theorem 3.4 : Given a machine M, let the number of
literals tn a one-hot coded and logic minimized two-level
tmplementation be Ly. If an ideal factor F € M is ez-
tracted, then the number of literals obtained by one-hot
coding the factored and facloring machines separately,
Ly, is related to Ly by the following inequality.

Nr-1
Lo 2 Ly + Y LIT(em(i) -

i=1




Nr x lem(NR)| — Nrx (Np-1) - |[EXTpH|

where LIT(em (1)) corresponds to the number of lilerals
obtained by one-hot encoding and minimizing the e(i)

internal edges in each Op' and EXTpm corresponds to
the number of product terms after one-hot coding and
minimizing the eziernal edges EXT.

Proof: The arguments of Theorem 3.2 corresponding
to the merging of edges hold. However, the number of
literals in (ﬂ: external edges EXT in the factored ma-
chine is higher because the number of literals in each
state is 2, rather than 1. If n external edges merge,
we have n + 1 literals in the present state space of the
factored machine, as opposed to n in the original ma-
chine (It is n + 1 rather than 2n because the merging
of edges implies one of the state fields in each of the
edges is identical). Therefore, the number of extra lit-
erals is |[EXT,,| (In the worst case of EXT not merging
with any e(i)). The reduction in the number of liter-
als is due to the merging of the e(i). The number of
literals in these edges in the original machine is simply
2,’!", LIT(em(i)). In the factored machine, we have
only one set of these e(i) edges. The number of literals
in this set is not the same, however, as in the original
machine sets, since the number of literals in the present
state space is higher (the number of literals in each state
i8 2, rather than 1). Consider the first next state field,
fny. The first present state field will have Ny liter-
als in each product term that realizes fn;. The second
present state field will have the same number of liter-
als as in any en(?) in the lumped field of the original
machine. Now consider the second next state field. Ng
groduct terms suffice to realize this field. The num-

er of literals in each of these product terms is simply
Np—1, corresponding to the entry and internal states in
F, since the primary input field is a don’t care. There-
fore, the total number of literals in the factored machine
is LIT(em(NR)) + Nr X |em(Ng)| + Nr x (Np = 1).
The reduction in literals is then

Nrp-1

> LIT(em(i)) — Ng X |em(NR)]

=1
~ Nrx(Np—1) - |[EXTn|
Q.E.D.

4 Ideal Factorization

In this section, we will present an algorithm for finding
all ideal factors given a State Transition Graph descrip-
tion of a machine. The techniques of [3] that identify
exact factors cannot be used, since they assumed the ex-
istence of a starting state in each occurrence from which

Il other states in the occurrence could be r . We
o not make tﬁ’i‘s assumpglon ere — an f(?ecg actor

may have multiple entry states and therefore no start-
ing state.
hese ideal factors are extracted prior to state as-

signment in order to improve the performance of state
assignment algorithms. The factors extracted may over-
lap. Thus, not all factors can be extracted — extractin
one factor may invalidate the other. In Sections 5 an
6, we discuss techniques for choosing the appropriate
factor(s) to extract in order to maximize the reduction
in logic complexity after encoding and optimization.

The procedure starts with all possible exit state sets
and traces the fanin of the states so as to identify ideal
factors.

1. First, all sets of states of cardinality equal to Ng
whose fanin edges assert the same outputs, if driven
by the same input combination. regardless of what
states they fan out of, are found. These sets are
stored in Tp;.

2. All sets of states of cardinality equal to Nz whose
fanout edges assert the same outputs, if driven
by the same input combination, regandless of what
states they fan into, are found. These sets are
stored in Tpo.

3. A (new) set of states Sg € Ty is picked.

4. An attempt is made to construct an ideal factor(s)
whose exit state set corresponds to Sg. This is
done by tracing the fanin of Sg. The set of states
that fan into each ¢; € Sg, 1 < 1 < Np are found,
namely, fanin(g;).

5. A check is made to see if the fanin(q;) are in direct
correspondence. Each correspondence set must be-
long to Tro and the edge relationships between g;
and fanin(g;) and within the fanin(g;) must be
identical for all i. If the check fails, go to Step 3.

6. F = ¢i U fanin(g;) may be an ideal factor, with
gi representing the exit state of occurrence Of' and

fanin(q;) the entry states. If so, F is recorded as
such.

7. The fanin of the fanin(q;) are traced back. Given
a state s;; € fanin(g;), if the fanin(s;;) are not in
direct correspondence, then s;; has to be an entry
state. If s,; is not an entry state (receives edges
from some s;; € fanin(g;) or from ¢;), go to 3.

8. For all states s;;, that do not have to be entry
states, fanin(s;;) are found. A check is made to
see if 8;; can be an entry state for some ideal factor.
Choices corresponding to treating each of these s;;
as an internal or entry state are exhaustively ex-
plored. If the s;; is chosen to be an entry state, it
is merely added to the current F. Else if s;; is in-
ternal, fanin(s;;) is also added to F. The various
F’s are checked for ideality and the ideal factors
are recorded.

9. Steps 7-8 are repeated f[or the fanins of the
fanin(s;;) and so on.

The function fanin(arg) above returns all states such
that an edge from arg to each of these states exists.

5 Identifying Near-Ideal Factors

While the number of ideal factors in a machine is typi-
cally small and all ideal factors can be enumerated, there
may be large numbers of near-ideal factors. Extracting
these factors does not provide the gain corresponding to
Theorem 3.2 or Theorem 3.4, but could produce some
reduction in the eventual number of product terms or
literals. We therefore have to solve the problem of de-
tecting non-ideal, but good, factors and estimating the
gain in extracting them.

If one can estimate the gain of a non-ideal factor,
then a search procedure similar to the one described in
the previous section can be used to detect good factors,
i.e. factors with large associated gains. This estimation




of gain is different for the two-level or multi-level cases
and is described in the next section. In this section,
modifications to the ideal factor search procedure to find
near-ideal factors are described. These modifications
are similar to those proposed in [3] to find near-exact
factors.

1. Find similarity weights for all possible Ng sets of
states. These weights are found on the basis of I/O
fanout and fanin relationships between each set of
states, i.e. the number of input symbols for which
edges fanning out of all states in the set have dif-
ferent outputs. A weight of zero would correspond
to exactly similar states.

2. These sets are ordered in terms of increasing
weights (decreasing similarity). Beginning from
each initial exit state set, the fanins of the set are
traced as in Section 4.

3. The fanin states from the initial set are found and
added to the factor (Step 5 in Section 4). The

gain is extracting the current factor is estimated
(described in Section 6). If the gain is below a
prescribed value, the search is terminated and a
new iteration with a new initial set is begun. Else,
the factor and its associated gain are recorded and
fanin tracing continues.

Thus, given Ng, one can find non-ideal factors, esti-
mate the gains in extracting them and select factors
with estimated gain greater than a prescribed value.

This, aI\lu:f is a function of the nymber of stgées in the
non-ideal factor whose gain 1s being estimated. Larger

factors, i.e. factors with more states, require a greater
estimated gain in order to be recorded and in order for

the search {o continue. This is done because of the es-
timation of gain for non-ideal factors is approximate.

6 Implementation-Specific Fac-
torization Techniques

6.1 Targeting Two-Level Logic

iven a machine and all the ideal factors in the ma-
Sune, an appropriate set of’ l}actors lbas to ge selected so

as to maximize the cumulative gain in extracting these
factors. The factors may be disjoint or may overlap. In
the latter case, extracting one factor may invalidate the
other. Thus, a step that selects the largest (maximum
gain), non-overlapping set of factors has to be performed
prior to state encoding. However, since the number of
ideal factors is generally not very large, this step can be
performed optimally, via exhaustive search.

The issue extracting of non-ideal, but good factors is
important. Since two-level implementations are quite
constrained, even a small non-ideality in a factor can
result in negligible gain in the number of product terms
when extracting the factor. Hence, ideal factors are al-
ways extracted if they exist. A search can be performed
on the ideally-factored machine, using the procedure de-
scribed in the previous section, for good factors, or if no
ideal factors exist, on the original machine. The gain of
non-ideal factors in the two-level case is measured by

Np Nn
> lem@®] = 16 Imi
=] i=1

to provide a relative, rather than absolute estimate, cor-

responding to the possible reduction in the number of
product terms. As before, e,,(f) corresponds to the

[_Lkxample | inp | out | sta | min-enc ]

sreg 1

mod 2 1 11 11
sl <] 0 2V
planet [ 1Y ] 48
sand 11 9| 52
styr ) 10 U
sci 20 04 | 97 {
industl 13 19 1 21
industZ 10 1o | 43
contl 8 4 1 04
conts [ 9 J4

Table 1: State Machine Statistics

number of product terms, by one-hot coding and mini-
mizing e(i) separately. e’(i) corresponds to e(i) € Of"
except that corresponding states in each Of* are given
the same codes (as when factoring).

Near-ideal factors are selectively extracted based on
their estimated maximum cumulative gain.

6.2 Targeting Multi-Level Logic

In the multi-level case, non-ideal, but good factors play
a more important part. First, all ideal factors are
found and their gains calculated. However, these fac-
tors are not immediate.y extracted as in the two-level
case. Near-ideal factors with the largest estimated gain
in literals are found using the methods of Section 5. The
gain of ideal and non-ideal factors is measured by

Np Ng
3 LIT(em(3)) = LIT((|J ') )m)

i=1 =1

where e,, (1) and e’(f) are the same as before. A selection
of non-overlapping ideal and near-ideal factors is made
80 as to maximize the overall gain.

7 Results

In this section, we present some preliminary results us-
ing the factorization algorithms presented 1n the previ-
ous sections, prior to state assignment.

The statistics of benchmark examples from the
MCNC 1987 Logic Synthesis Workshop and other
sources are given in Table 1. The examples were first
state minimized. In Table 1, the number of inputs (inp),
outputs (out), states (sta) and the minimum number of
bits (min-enc) required for encoding are given. In Table
2, comparisons are drawn against the state assignment
program KISS. The number of encoding bits used (eb)
and the number of product terms (prod) required are
given for KISS. The results for factorization followed by
a KISS-style algorithm are given under FACTORIZE.
The CPU times required for factorization and state as-
signment were nominal in all cases. The number of oc-
currences of the extracted factor (occ) and the type of
factor extracted (typ = IDE for ideal, NOI for non-
ideal) are indicated for each example. As the results
indicate, ideal (or close to ideal) factors exist in large
machines and extracting them produces better results.
The smaller machines in the benchmark set (not shown)
are less amenable to factorization — in fact, KISS might
indeed be producing the minimum number of product




Table 2: Comparisons for two-level implementations

terms for these examples. Two exceptions are the ex-
amples mod12 and sreg; counters and shift registers
generally have ideal factors that can be extracted to
produce better results. One cannot really lose by using
this technique of factorization prior to using a KISS-
style algorithm. As mentioned in Section 5, when tar-
geting two-level implementations, it is better to extract
a small ideal factor rather than a larger non-ideal one
and hence for these examples, if a single ideal factor was
found, it was extracted.

In Table 3, comparisons are drawn against the state
assignment program MUSTANG. MUSTANG imple-
ments two different encoding algorithms — algorithms
based on the present state space (MUP) and algorithms
based on the next state space (MUN)Y The number of
encoding bits used (eb) and the number of literals after
multi-level logic optimization using MIS [1) are given
for FAP and FAN (factorization followed by MUP and
MUN respectively). MUP and MUN used a2 minimum
bit encoding in all cases and the literal counts obtained
are also given in Table 3. What is interesting in the
results, especially for the large examples, is that FAN
or FAP produce significantly better resuits than either
MUP or MUN, but are themselves very close. Indeed,
an initial factorization results in a better integration
of the present state and next state coding strategies of
MUSTANG. Thus, instead of running both algorithms
in MUSTANG, only one has to be used to obtain as good
or better results. The factors were extracted using the
procedure described in Section 6.

Machines contl and cont2 are contrived examples,
each with a large ideal factor in them. Detecting these
factors prior to encoding produces much better results
than encoding alone, especially in the two-level case.
These examples bring out the deficiences in existing
state assignment algorithms.

8 Conclusions

We have presented state assignment techniques tar-
eting two-level and multi-level logic implementations
ased on state machine factorization algorithms fol-
lowed by state assignment algorithms. These techniques
produce results that are superior to previous approachcs

to state assignment.
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X occ | typ KISS | FAUTORIZE ] Ex occ/typ | eb [ FAP T FAN TMUP [ MUN
eb | prod | eb rod_ lit lit lit lit

[sre (modl2 ] {1 7 2T 3§ 33
e N /. B
planet | 2| NOI| 61 80 [ 6 i) 2 oDt | o | 1601 Zo11 376 1 00
pan T IDE— % R planet | 3/NOT | 6| 547 | 549 ] 563 | 504
i | IDE 6| 87 sand 4/IDE | 6 | 531 | 538 | 575 | 604
R e SR (AR R AR
scl ZINOI | -1 - 7 T41 8c 7
indust] | "2 T NOI'{ 61 87 i 78 industl T 2/NOI| 61 401 | 404 | 441 416
indust | ZJ | IDE{ 6] U8 | 6 79 indust2 | 9/IDE | 6 | 498 | 504 | 239 | 545
cont] 1 IDE | 81 104 [ O T cont] 2/IDE | O [ 872 | 861 [ 094 | 946
contZ <c[IDE] 7] 94 | 8] ©8 cont? 5/IDE | 8] 451 | 456 ] 612 | 623

Table 3: Comparisons for multi-level implementations
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